

## Pilot Project: Integrated Techniques for the Seismic Strengthening & Energy Efficiency of Existing Buildings

Previous/associated work: the SAFESUST project

Paolo Negro , Elvira Romano et al. 17 November 2020



## Impact of sustainability and energy efficiency on building design and retrofit: SAFESUST

- A JRC Institutional WP as a part of Safe&Clean Construction
- A holistic approach to include safety and sustainability in design: SAFESUST approach
- The Sustainable Structural Design (SSD) method for design/retrofit of buildings



### Life Cycle Analysis (LCA, from cradle to grave...)





#### Life Cycle Analysis (LCA, from cradle to grave)

Many LCA assessment procedures....

- Different criteria
- Lack interoperability
- Long and difficult
- Only a posteriori....

greenstar
SBTool
LEED
HQE CASBEE DGNB



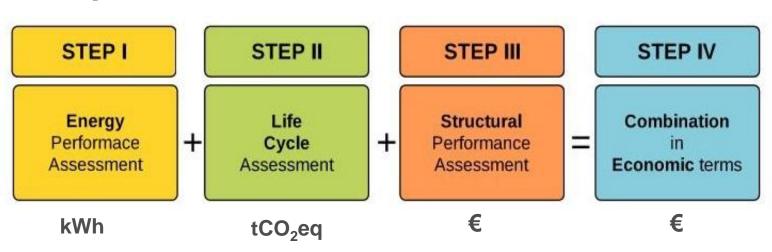
#### How to match safety with sustainability?

The growing interests in achieving the environmental goals of the global agreements might be prevailing on other aspects of sustainability of buildings, such as seismic safety



#### How to optimize all performances?






(Public domain - CC0, via Wikimedia commons)



#### How to optimize all performances?

# Sustainable Structural Design (SSD) methodology





STEP I

Energy Performace Assessment

kWh

- Energy performance is easily understood by owners, investors and decision makers.
- The advantages of energy upgrading can be measured in simple terms: reduction of operating costs, to be compared with investments.
- The first step of the method is the evaluation of the total expected energy consumption across the expected lifetime of the building.

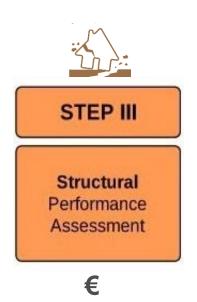
#### Can we define a cost for safety?



STEP III

Structural Performance Assessment

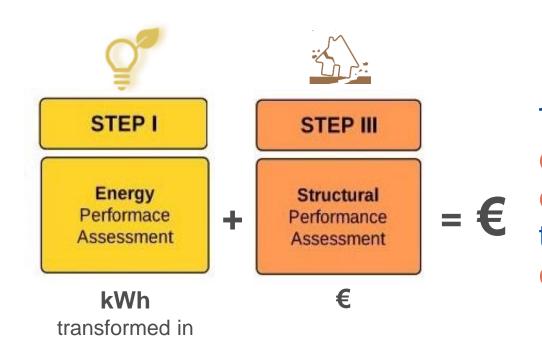
€


 The "cost" associated to safety can be computed by adopting a Performance Based approach such as in the PEER method

$$G(DV) = \iiint_{0}^{\infty} G(DV|DM) \left| \frac{dG(DM|EDP)}{dDM} \right| \left| \frac{dG(EDP|IM)}{dEDP} \right| dIM dEDP dDM$$

 The PEER method established a sound conceptual framework, but is by far too complicated to be used in practical design.




#### A Simplified Performance Based Assessment



- A set of limit states (minor damage, extensive damage, life safety...) is defined and the corresponding repair/replacement costs (possibly including downtimes) are evaluated
- A peak ground acceleration is associated to each limit state by a pushover curve
- The corresponding probability of exceedance is obtained by the return periods specified for the site by the design code
- The expected economic loss is the sum of the products of the probabilities of exceedance and the costs at each limit state

**Reference:** Negro P., Mola E., A performance based approach for the seismic assessment and rehabilitation of existing RC buildings, Bulletin of Earthquake Engineering, 2017

#### A total cost for the building



The cost of total expected energy consumption can be summed to the expected economic loss and compared to the investment for the construction cost or cost of upgrading

European

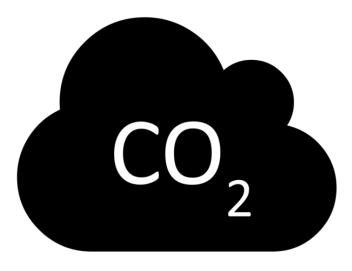
**Reference:** Lamperti M., Loli A., Negro P., Balanced evaluation of structural and environmental performance in building design, Buildings, 2018.


€

#### How about sustainability?

- Energy performance is related to environmental performance
- The cost of energy might (or might not) include a sort of environmental cost (carbon tax), but
- There is much more to sustainability than energy performance (embodied energy, raw material consumption, construction/demolition..)
- The latter might become dominant for nZEBs




#### Back to Life Cycle Analysis



The outcome of a LCA is typically expressed in terms of total equivalent CO<sub>2</sub> emissions across the whole life cycle of the buildings



#### A global performance indicator





(Public domain - CC0, via Wikimedia commons)



#### A global performance indicator



VS

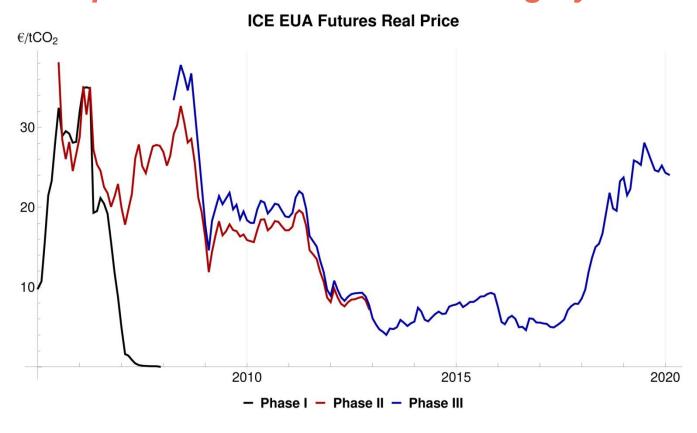


(Public domain, via Wikimedia commons)



#### The *price* of Carbon

"Carbon must have its price – because Nature cannot pay the price anymore"

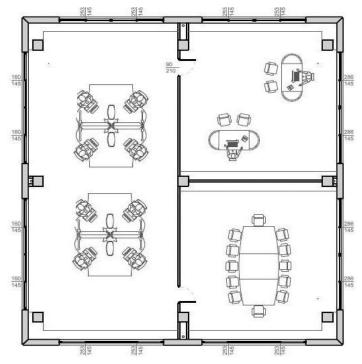

(President von der Leyen, State of the Union Address)





### The price of Carbon

#### Cost of equivalent CO<sub>2</sub> emissions: European Union Emission Trading System






#### Application to a building

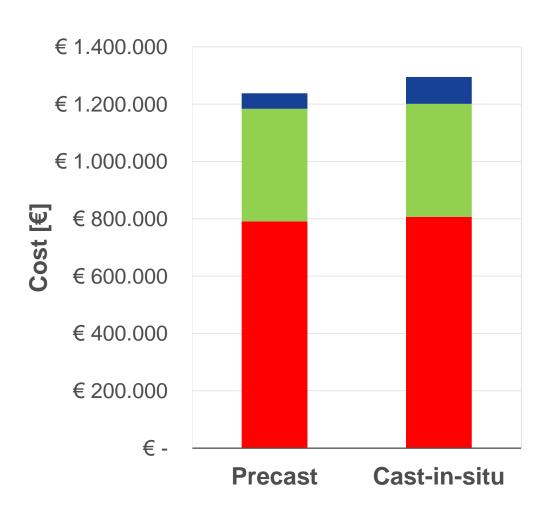


- Three storey building
- 15.62m × 16.87m in plan
- 2 spans of 7m in X and Y dir.
- 9.9m (3.5+3.2+3.2) height



Location: Barcis (PN)

PGA = 0.25 g

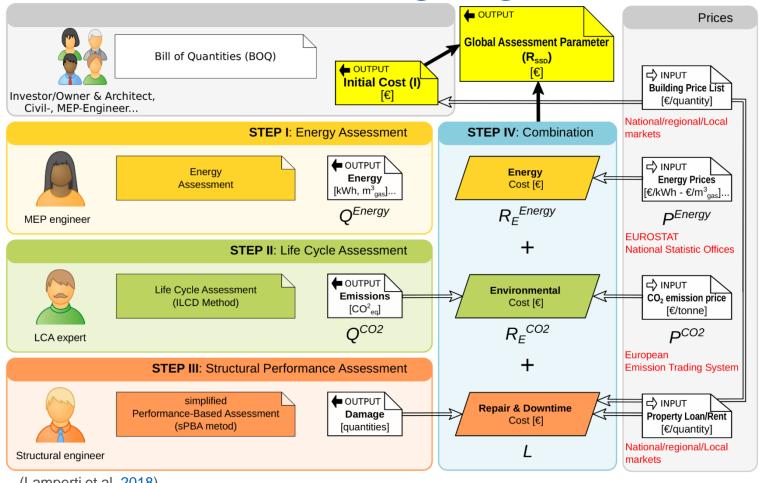

Zone  $F \rightarrow U = 0.26 \text{ W/m}^2\text{K}$ 

Office occupancy

Service life 50 years



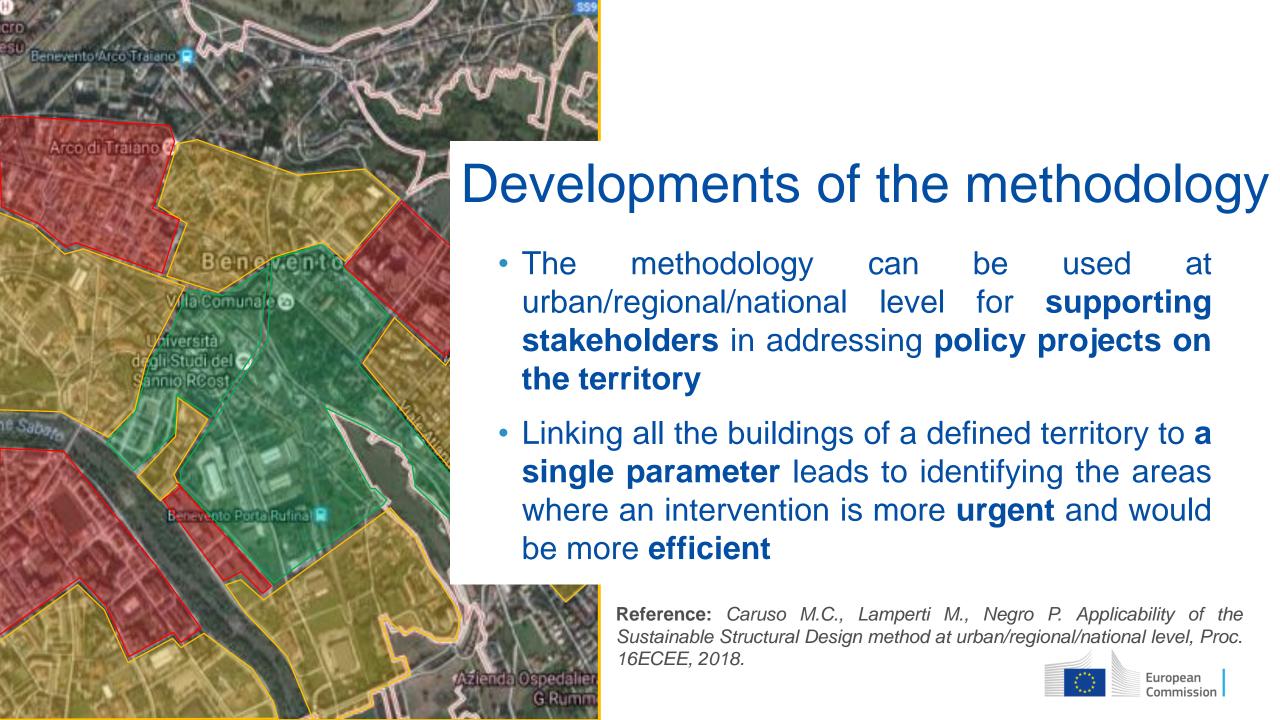
#### Application to a building




- Total Expected Loss
- Environmental Impact
- Initial Cost

| Cost [€]                                     | Precast   | Cast-in-situ |
|----------------------------------------------|-----------|--------------|
| Initial Cost                                 | 790.530   | 807.055      |
| Environmental Impact                         | 393.218   | 394.054      |
| Total Expected Loss                          | 53.947    | 93.690       |
| Global Assessment Parameter R <sub>SSD</sub> | 1.237.695 | 1.294.799    |




Costs as a common language....



(Lamperti et al. 2018)

Reference: Lamperti Tornaghi M., Loli A., and Negro P., Balanced evaluation of structural and environmental performance in building design, Buildings, 8 (4), 52, 2018.





#### Not only earthquakes

#### Structural safety

Higher live load requirements
Upgrading, transformations
Maintenance
Fire resistance
Climate change

#### **SURECON:**

A ROADMAP FOR A SUSTAINABLE INTEGRATED RETROFIT OF CONCRETE BUILDINGS



**Reference:** A Roadmap for a SUstainable integrated REtrofit of CONcrete buildings, Iuorio, O. and Negro, P. editor(s), Publications Office of the European Union, Luxembourg, 2019. ISBN 978-92-76-23865-2



## Thank you

#### Contact us: JRC-REEBUILD@ec.europa.eu

#### © European Union 2020

#### Except:

Slide 4,12: house with leaf icon, Artco,©stock.adobe.com

Slide 6: building project, Chlorophylle, ©stock.adobe.com; energy classification @Wikimedia Commons

Slide 7: bulb, leaf icons @ Microsoft Office PowerPoint Stock Images

Slide 8,9: (left to right) Damaged buildings, Angelo Giordano, @Pixabay; Seismic hazard map, Giardini et al., © The Authors, 2014

Slide 10: (left to right) bulb, leaf icons @ Microsoft Office PowerPoint Stock Images; damaged house icon, chartgraphic, ©stock.adobe.com;

Slide 13: CO<sub>2</sub> emissions icon @Wikimedia Commons

Slide 14: (left to right) apple fruit, Abhijit Tembhekar, ©The Author, 2009 - via Wikimedia Commons; orange fruit @Wikimedia Commons

Slide 16: EUA future real price graph, Nboccard, © The Author, 2020 - via Wikimedia Commons

Slide 19: overall flowchart, Lamperti Tornaghi et al ©The Authors, 2018

